您好,欢迎来到三六零分类信息网!老站,搜索引擎当天收录,欢迎发信息
免费发信息
三六零分类信息网 > 南充分类信息网,免费分类信息发布

数控等离子切割机切割工艺参数的选择

2024/6/18 15:15:36发布63次查看
数控等离子切割机切割工艺参数的选择
数控等离子机切割工艺参数的选择对切割质量、切割速度和效率等切割效果
的影响是至关重要的。正确使用数控等离子机进行高质量的快速切割,必须对切
割工艺参数进行深刻地理解和掌握。
一、切割电流: 它是zui重要的切割工艺参数,直接决定了切割的厚度和速
度,即切割能力。造成影响:1、切割电流增大,电弧能量增加,切割能力提高,
切割速度是随之增大;2、切割电流增大,电弧直径增加,电弧变粗使得切口变
宽;3、切割电流过大使得喷嘴热负荷增大,喷嘴过早地损伤,切割质量自然也
下降,甚至无法进行正常割。所以在切割前要根据材料的厚度正确选用切割电流
和相应的喷嘴。
二、切割速度:*切割速度范围可按照设备说明选定或用试验来确定,由
于材料的厚薄度,材质不同,熔点高低,热导率大小以及熔化后的表面张力等因
素,切割速度也相应的变化。主要表现:1、切割速度适度地提高能改善切口质
量,即切口略有变窄,切口表面更平整,同时可减小变形。2、切割速度过快使
得切割的线能量低于所需的量值,切缝中射流不能快速将熔化的切割熔体立即吹
掉而形成较大的后拖量,伴随着切口挂渣,切口表面质量下降。3、当切割速度
太低时,由于切割处是等离子弧的阳极,为了维持电弧自身的稳定,阳极斑点或
阳极区必然要在离电弧zui近的切缝附近找到传导电流地方,同时会向射流的径向
传递更多的热量,因此使切口变宽,切口两侧熔融的材料在底缘聚集并凝固,形
成不易清理的挂渣,而且切口上缘因加热熔化过多而形成圆角。4、当速度极低
时,由于切口过宽,电弧甚至会熄灭。由此可见,良好的切割质量与切割速度是
分不开的。
三、电弧电压:一般认为电源正常输出电压即为切割电压。等离子弧切割机
通常有较高的空载电压和工作电压,在使用电离能高的气体如氮气、氢气或空气
时,稳定等离子弧所需的电压会更高。当电流一定时,电压的提高意味着电弧焓
值的提高和切割能力的提高。如果在焓值提高的同时,减小射流的直径并加大气
体的流速,往往可以获得更快的切割速度和更好的切割质量。
四、工作气体与流量:工作气体包括切割气体和辅助气体,有些设备还要求
起弧气体,通常要根据切割材料的种类,厚度和切割方法来选择合适的工作气
体。切割气体既要保证等离子射流的形成,又要保证去除切口中的熔融金属和氧
化物。过大的气体流量会带走更多的电弧热量,使得射流的长度变短,导致切割
能力下降和电弧不稳;过小的气体流量则使等离子弧失去应有的挺直度而使切割
的深度变浅,同时也容易产生挂渣;所以气体流量一定要与切割电流和速度很好
的配合。
现在的等离子弧切割机大多靠气体压力来控制流量,因为当枪体孔径一定
时,控制了气体压力也就控制了流量。切割一定板厚材料所使用的气体压力通常
要按照设备厂商提供的数据选择,若有其它的特殊应用时,气体压力需要通过实
际切割试验来确定。zui常用的工作气体有:氩气、氮气、氧气、空气以及h35、
氩-氮混合气体等。
1、氩气在高温时几乎不与任何金属发生反应,氩气等离子弧很稳定。而且
所使用的喷嘴与电极有较高的使用寿命。但氩气等离子弧的电压较低,焓值不
高,切割能力有限,与空气切割相比其切割的厚度大约会降低25%。另外,在
氩气保护环境中,熔化金属的表面张力较大,要比在氮气环境下高出约30%,
所以会有较多的挂渣问题。即使使用氩和其它气体的混合气切割也会有粘渣倾
向。因此,现已很少单独使用纯氩气进行等离子切割。
2、氢气通常是作为辅助气体与其它气体混和作用,如的气体h35(氢
气的体积分数为35%,其余为氩气)是等离子弧切割能力zui强的气体之一,这
主要得利于氢气。由于氢气能显著提高电弧电压,使氢等离子射流有很高的焓
值,当与氩气混合使用时,其等离子射流的切割能力大大提高。一般对厚度70mm
以上的金属材料,常用氩+氢作为切割气体。若使用水射流对氩+氢气等离子弧
进一步压缩,还可获得更高的切割效率。
3、氮气是一种常用的工作气体,在有较高电源电压的条件下,氮气等离子
弧有较好的稳定性和比氩气更高的射流能量,即使是切割液态金属粘度大的材料
如不锈钢和镍基合金时,切口下缘的挂渣量也很少。氮气可以单独使用,也可以
同其它气体混和使用,如自动化切割时经常使用氮气或空气作为工作气体,这两
种气体已经成为高速切割碳素钢的标准气体。有时氮气还被用作氧等离子弧切割
时的起弧气体。
4、氧气可以提高切割低碳钢材料的速度。使用氧气进行切割时,切割模式
与火焰切割很想像,高温高能的等离子弧使得切割速度更快,但是必须配合使用
抗高温氧化的电极,同时对电极进行起弧时的防冲击保护,以延长电极的寿命。
5、空气中含有体积分数约78%的氮气,所以利用空气切割所形成的挂渣情
况与用氮气切割时很想像;空气中还含有体积分数约21%的氧气,因为氧的存
在,用空气的切割低碳钢材料的速度也很高;同时空气也是的工作气体。
但单独使用空气切割时,会有挂渣以及切口氧化、增氮等问题,而且电极和喷嘴
的寿命较低也会影响工作效率和切割成本。
五、喷嘴高度:指喷嘴端面与切割表面的距离,它构成了整个弧长的一部分。
由于等离子弧切割一般使用恒流或陡降外特征的电源,喷嘴高度增加后,电流变
化很小,但会使弧长增加并导致电弧电压增大,从而使电弧功率提高;但同时也
会使暴露在环境中的弧长增长,弧柱损失的能量增多。在两个因素综合作用的情
况下,前者的作用往往*被后者所抵消,反而会使有效的切割能量减小,致使
切割能力降低。
通常表现是切割射流的吹力减弱,切口下部残留的熔渣增多,上部边缘过熔
而出现圆角等。另外,从等离子射流的形态方面考虑,射流直径在离开枪口后是
向外膨胀的,喷嘴高度的增加必然引起切口宽度加大。所以,选用尽量小的喷嘴
高度对提高切割速度和切割质量都是有益的,但是,喷嘴高度过低时可能会引起
双弧现象。采用陶瓷外喷嘴可以将喷嘴高度设为零,即喷口端面直接接触被切割
表面,可以获得很好的效果。
六、切割功率密度:为了获得高压缩性的等离子弧切割电弧,切割喷嘴都采
用了较小的喷嘴孔径、较长的孔道长度并加强了冷却效果,这样可以使得喷嘴有
效断面内通过的电流增加,即电弧的功率密度增大。但同时压缩也使得电弧的功
率损失加大,因此,实际用于切割的有效能量要要比电源输出的功率小,其损失
率一般在25%~50%之间,有些方法如水压缩等离子弧切割的能量损失率会更
大,在进行切割工艺参数设计或切割成本的经济核算时应该考虑这个问题。
举例:在工业中使用的金属板厚大多是在50mm以下,在这个厚度范围内
用常规的等离子弧切割往往会形成上大下小的割口,而且割口的上边缘还会导致
切口尺寸精度下降并增加后续加工量。当采用氧和氮气等离子弧切割碳钢、铝和
不锈钢时,当板厚在10~25mm范围内时,通常是材料越厚,端边的垂直度越好,
其切割棱边的角度误差在1度~4度。当板厚小于1mm,随板厚的减小,切口角
度误差从3度~4度增加到15度~25度。
一般认为,这种现象的产生原因是由于等离子射流在割口面上的热输入不平
衡所致,即在割口的上部等离子弧能量的释放多于下部。这个能量释放的不平
衡,与很多工艺参数密切相关,如等离子弧压缩程度、切割速度及喷嘴到工件的
距离等。增加电弧的压缩程度可以使高温等离子射流延长,形成更为均匀的高温
区域,同时加大射流的速度,可以减小切口上下的宽度差。然而,常规喷嘴的过
度压缩往往会引起双弧现象,双弧不但会损耗电极和喷嘴,使切割过程无法进
行,而且也会导致切口质量的下降。另外,过大的切割速度和过大的喷嘴高度都
会引起切口上下宽度差的增加。
南充分类信息网,免费分类信息发布

VIP推荐

免费发布信息,免费发布B2B信息网站平台 - 三六零分类信息网 沪ICP备09012988号-2
企业名录